MV and TV Repair – Path to Clinical Applications

Alan C. Yeung, MD
Li Ka Shing Professor of Medicine
Chief (Clinical), Division of Cardiovascular Medicine
Stanford University School of Medicine

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Scientific Advisory Board
- Executive Physician Council

Company

- Edwards Lifesciences, Abbott
- Medtronic, Abbott
- Boston Scientific Corp

Scope of the Problem

TABLE 2. Estimated structural heart disease opportunity: United States

	Patient population	Currently treated
Mitral regurgitation		
Moderate to severe	2,300,000 ^{2,3}	48,000*2
Severe	220,000 ^{2,3}	
Aortic stenosis		
All grades	749,000 ^{2,4}	79,000 ²
Severe	749,000 ^{2,4} 125,000† ^{2,4,5}	
Tricuspid regurgitation Moderate to severe	1,600,000‡ ^{2,3}	<8000* ²

<1% of patients with moderate or severe TR undergoing surgery annually. Surgery rarely performed (16±5%) 5-years after diagnosis

What Evidence do you Need for Valve Therapy Approval and to Change the Guidelines?

Outcome measures: "Hard" clinical endpoints

- US and Europe: Safety
- US: Effectiveness (death, HF hospitalization)

Rigor:	Registries	Small RCT(s)	Large RCT(s)	
Approval				
- Europe	(unrestricted)	(unrestricted)	√ (unrestricted)	
- US	√ (limited)	√ (limited)	√ (unrestricted)	
Guidelines				
- Europe	IIb	I or IIa	1	
- US	llb	lla		

Transcatheter MV Repair: Device Landscape 2017

Edge-to-edge

- MitraClip***
 - Pascal*
 - MitraFlex

Coronary sinus annuloplasty

- Cardiac Dimensions Carillon**
 - Cerclage annuloplasty

Direct annuloplasty

- Mitralign TAMR**
- Valtech Cardioband**
 - GDS Accucinch*
 - Millipede IRIS*
 - MVRx ARTO*
 - Mardil BACE*
 - Mitraspan TASRA*
 - Valcare Amend*
 - Micardia enCor*
- Cardiac Implants RDS
 - QuantumCor (RF)
 - Valfix

MV replacement

- Edwards CardiAQ*
 - Edwards Fortis*
 - Neovasc Tiara*
 - Abbott Tendyne*
- Medtronic Intrepid*
 - HighLife*
 - MValve*
 - Caisson*
 - Cephea
 - NCSI NaviGate
 - St. Jude
- Micro Interventional
- Valtech CardioValve
 - ValveXchange
 - MitrAssist
 - Braile Quattuor
 - Direct Flow
 - Sinomed Accufit
- Corona MVR w/Amend ring

*In patients *CE mark *FDA approved

MV replacement (cont)

- MitralHeal
- HT Consultant Saturn
 - Lutter valve
- Transcatheter Technologies
 Tresillo
 - Venus
 - Verso
 - Transmural Systems
 - 4C

Other approaches

- NeoChord DS 1000**
- Harpoon neochords*
 - Babic chords*
- Middle Peak Medical*
- St. Jude leaflet plication*
- Cardiosolutions Mitra-Spacer*
 - Mitralix*
 - Valtech Vchordal
 - Coramaze Mitramaze

COAPT Principles Adopted by MVARC as a Model for MV Device Trials

Expert consensus document by cardiology valve specialists, HF specialists, interventional cardiologists, mitral surgeons, imaging experts, clinical trialists, statisticians, with participating representatives from FDA

Developed between 2012 - 2014

Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles

A Consensus Document From the Mitral Valve Academic Research Consortium

Gregg W. Stone, MD,*† Alec S. Vahanian, MD,‡ David H. Adams, MD,§ William T. Abraham, MD,∥

Jeffrey S. Borer, MD,¶ Jeroen J. Bax, MD, PhD,# Joachim Schofer, MD,** Donald E. Cutlip, MD,††

Mitchell W. Krucoff, MD,‡‡ Eugene H. Blackstone, MD,§§ Philippe Généreux, MD,*†∥ Michael J. Mack, MD,¶¶

Robert J. Siegel, MD,## Paul A. Grayburn, MD,¶¶ Maurice Enriquez-Sarano, MD,***

Patrizio Lancellotti, MD, PhD,††† Gerasimos Filippatos, MD,‡‡ Arie Pieter Kappetein, MD, PhD,§§§

for the Mitral Valve Academic Research Consortium (MVARC)

COAPT Trial: Design

~610 patients enrolled at up to 100 sites

Symptomatic HF treated with maximally tolerated guideline directed medical therapy
Significant FMR (≥3+ by echo core lab)
Not appropriate for MV surgery as determined by site's local heart team
Valve anatomy eligible for MitraClip treatment

Randomize 1:1

MitraClip N~305 Control group
Standard of care
N~305

Clinical and TTE follow-up: Baseline, treatment, 1-week (phone), 1, 6, 12, 18, 24, 36, 48, 60 months

Primary efficacy endpoint: Hospitalization for heart failure within 2 years Primary safety endpoint: Device-related complications at 1 year

Principal Investigators: Gregg Stone, Michael Mack
Heart Failure Co-Principal Investigators: William Abraham, JoAnn Lindenfeld

Sponsor: Abbott Vascular

COAPT: Enrollment strategies

- Investigator meetings at every major conference;
 COAPT radio show and webcasts; referral letter program; frequent contact with investigators
- 7 protocol amendments most including adjustments to the screening process and inclusion/exclusion criteria to make enrollment easier
- Number of sites increased from 75 to 100; added
 Canada
- Enthusiasm for this landmark trial is extraordinary
- Sponsor is deeply committed....people, \$\$\$

COAPT: Enrollment

Between December 2012 and June 10th, 2017, 600 patients have been randomized at 84 active sites

~0.15 pts/site/month

Enrollment of 610 pts is anticipated to conclude in ~2 weeks,

4.5 years after initiation

COAPT: Enrollment

Between December 2012 and been randomized national over!

Our long natio June 10th, 2017, 600 patie 4.5 years after initiation

COAPT: Enrollment

wittaclip RCIS in Functional wirk (I)				
	COAPT	RESHAPE-HF-2		
N patients, sites	610 pts @ 100 NA and EU sites	380 pts @ 50 EU sites		
Control arm	GDMT ± CRT	GDMT ± CRT		
FMR grade	≥3+ (EROA ≥30 mm² and/or Rvol >45 mL by ECL)	≥3+ (EROA ≥30 mm² and/or Rvol >45 mL by ECL)		

NYHA class

II, III, or ambulatory IV HF hosp within 12 months or BNP

≥300 pg/ml or nT-proBNP ≥1500 Other inclusion pg/ml within 12 months; MV surgery is not local standard of care ≥20% - ≤50%

LVESD ≤70 mm

Recurrent HF hospitalization

LV volumes

at 24 months

Primary safety

criteria

LVEF

Primary

efficacy

endpoint

SLDA, device embolizations, endocarditis/MS/device-related complications requiring non-

Death or recurrent HF

days;

hospitalization at 12 months All-cause mortality, stroke, MI, new renal replacement therapy non-elective CV

III or ambulatory IV

HF hosp within 12 months or

BNP ≥350 pg/ml or nT-

proBNP ≥1400 pg/ml within 90

MV surgery

≥15% - ≤40%

LVEDD ≥55 mm

not eligible for

MitraClin PCTs in Functional MP (ii)

will actip RC15 in Functional wik (ii)				
MITRA-FR		MATTERHORN		
N patients, sites	288 pts @ 22 French sites	210 pts @ 15 EU sit		
Control arm	GDMT ± CRT	MV Surgery		
FMR grade	Severe (EROA >20 mm² + Rvol >30 mL) by ECL	≥3+		
NYHA class	II - IV	≥III		

HF hosp within 12 months; not

eligible for MV surgery

≥15% - ≤40%

Death or recurrent HF

hospitalization at 12 months

2 years

IE Obodio

Other inclusion

LV volumes

endpoint

endpoint

DIC

Primary efficacy

Primary safety

Total follow-up

criteria

LVEF

≥20% - ≤45%

Death, HF rehosp,

reintervention, assist device

implantation or stroke at 12

months

Major adverse events at 30

days

1 year

I Haudlaitar

tes

MitraClip RCTs in Functional MR

- 4 trials randomizing ~1488 patients with heart failure and secondary (functional) MR to MitraClip vs. GDMT or MV Surgery
 - As of June 10th, 2017, ~1159 patients have been randomized:
 - COAPT 600/610 (98%) ~2 more weeks!
 - MITRA-FR 288/288 (100%) enrolled!
 - -RESHAPE-HF-2 222/380 (58%)
 - MATTERHORN 49/210 (23%)

COAPT Roll-in Results, Adjudicated (n=51)

	30 Days	1 Year
Death	0% (0/51)	16.0% (8/50)
HF hospitalization	11.8% (6/51)	28.0% (14/50)
Stroke	0% (0/51)	2.0% (1/50)
NYHA ↓ ≥1 class	56.0% (28/50)	60.5% (23/38)
MR ≤2+ (core lab)	80.9% (38/47)	82.9% (29/35)
∆ LVEDV (ml)	-2 ± 26 (36 paired)	-7 ± 33 (22 paired)
∆ 6MWD (m)	13 ± 112 (45 paired)	15 ± 94 (32 paired)
Δ KCCQ	14 ± 26 (49 paired)	13 ± 17 (37 paired)

Potential Pivotal Trial Pathways for Transcatheter MV Therapies

Primary MR (DMR)

Single-arm study in pts at prohibitive surgical risk (STS ≥8 or conditions precluding surgery) and high surgical risk (STS 4-<8); endpoint = objective performance criteria, OR Non-inferiority RCT vs. surgical MV repair

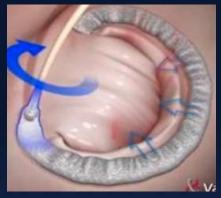
Functional MR

Superiority RCT vs. GDMT, OR Non-inferiority trial vs. MitraClip (if COAPT positive)

Endpoints for both

Composite clinical + surrogate outcomes, in pts with sustained MR reduction

Considerations for Effectiveness Endpoints


Hierarchical analysis based on importance and strength of surrogacy

- 1. Freedom from death >
- 2. Freedom from HF hospitalization >
- 3. ↑ 6MWD >
- 4. Improved QoL measures (eg KCCQ) >
- 5. ↓ LVEDV >
- 6. UBNP or NT-pro BNP

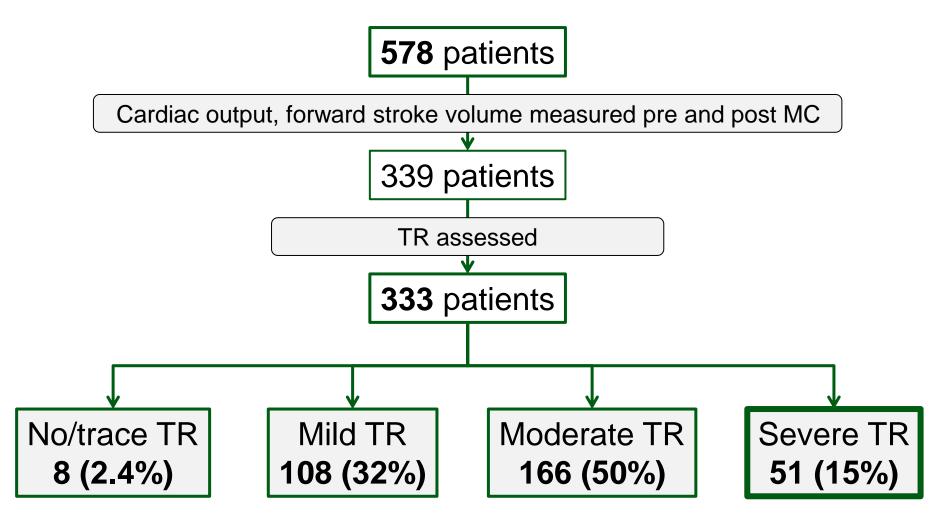
In patients with sustained MR reduction

Novel MV Repair Devices with Ongoing/Soon to Begin US Pivotal Randomized Trials

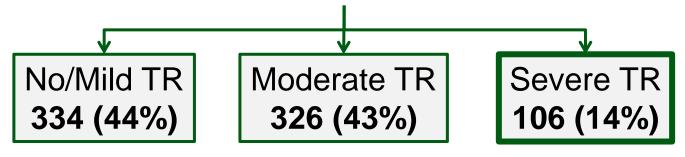
	Cardiac Dimensions Carillon	Edwards/Valtech Cardioband	NeoChord DS1000
Mechanism and Indication	Coronary sinus mediated posterior annulus cinching for FMR	LA semi-rigid posterior partial annuloplasty band with anchor cinching for FMR	Transapical PTFE neochords for DMR
IDE	Approved	Approved	Approved

TRICUSPID REGURITATION Etiology

- Primary DTR (25%)
 - Ebstein's anomaly
 - Carcinoid tumors
 - Infective endocarditis
 - Drug related "Fen-phen" diet pills
 - Radiation therapy
 - Rheumatic
 - latrogenic
 - Pacemaker, ICD, Biopsy


- Secondary FTR (75%)
 - Left heart disease
 - Right heart dysfxn
 - Pulmonary hypertension
 - Chronic jung disease
 - Thromboembolism
 - Annular dilation
 - Usually from A-fib

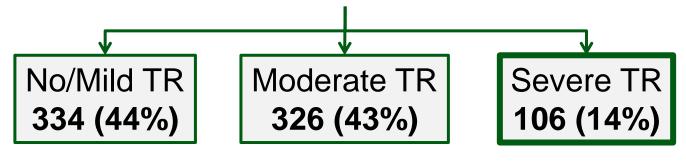
Tricuspid Regurgitation in Patients Undergoing MitraClip Therapy for MR at AK St. Georg


09/2009 – 11/2015

Impact of Tricuspid Regurgitation on Outcomes after MitraClip Therapy for MR in German TRAMI Registry

766 patients (08/2010 – 07/2013)

PHT: 42% 52% 59% (*P*=0.01)


MC success: 85% 86% 77% (*P*=0.11)

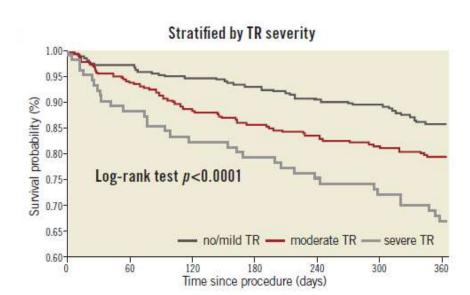
% 40-37.8 36.3 moderate TR severe TR no/mild TR 34.0 35-30-27.3 23.6 23.1 25-19.8 16.4 18.4 20-17.615.4_ 14. 15-10-1.82.2 1.51.9 MACE Mortality MACE MACCE MACCE MACE MACCE Severe Mortality Severe Mortality Severe bleeding bleeding bleeding 30-day Discharge 1-year

Impact of Tricuspid Regurgitation on Outcomes after MitraClip Therapy for MR in German TRAMI Registry

766 patients (08/2010 – 07/2013)

PHT: 42%

52%


59% (*P*=0.01)

MC success: 85%

86%

77%

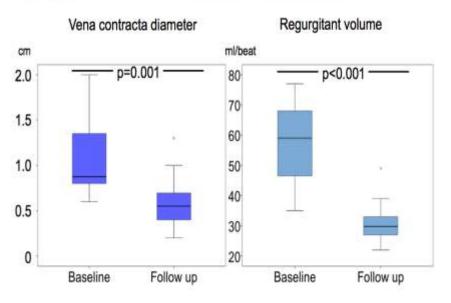
(P=0.11)

MITRACLIP in tricuspid position

- About 400 cases performed worldwide
- Transfemoral has become default approach
- Usually 1-2 clips on antero-septal leaflets (easiest to reach)
- Medial clip has better results than commissural clip but not always feasible
- TEE is standard and superior to ICE:
 - transgastric view is important in understanding location of TR, planning procedure, and deciding which leaflets to clip
- Patient selection is important
- Challenges:
 - Leaflets are more fragile, larger coaptation gap
 - Imaging not standardized
- New device with longer arms and a tricuspid delivery system are needed

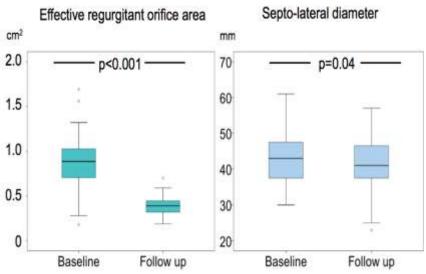
ORIGINAL RESEARCH ARTICLE

Transcatheter Treatment of Severe Tricuspid Regurgitation With the Edge-to-Edge MitraClip Technique

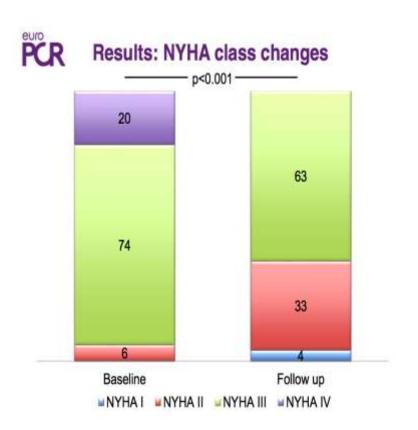

Georg Nickenig, Marek Kowalski, Jörg Hausleiter, Daniel Braun, Joachim Schofer, Ermela Yzeiraj, Volker Rudolph, Kai Friedrichs, Francesco Maisano, Maurizio Taramasso, Neil Fam, Giovanni Bianchi, Francesco Bedogni, Paolo Denti, Ottavio Alfieri, Azeem Latib, Antonio Colombo, Christoph Hammerstingl, Robert Schueler

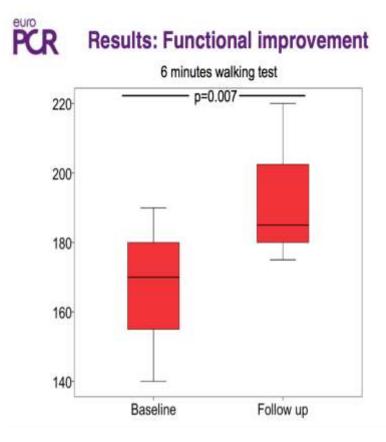
> https://doi.org/10.1161/CIRCULATIONAHA.116.024848 Circulation. 2017;135:1802-1814 Originally published March 23, 2017

TR Reduction



Results: Changes in echocardiographic TR-defining parameters





Results: Changes in echocardiographic TR-defining parameters

Clinical improvement

Tricuspid repair devices

Device

Access

Status*

About 60

patients

• About 15

patients

Name	MitraClip	Trialign	TriCinch	Cardioband	Millipede	Repair System	implantation	TRAIPTA
Device Image								
Description	•	Bicuspidisation of the TV by plicating	Bicuspidisation of the TV by cinching	Direct annuloplasty device	Complete semi rigid ring	Spacer to occupy the regurgitant orifice area	implantion in	Pericardial circumferential device

About 10

patients

* At the moment of reporting from recently international meeting

About 2

patients

FORMA

About 20

patients

Caval valve

transfemoral

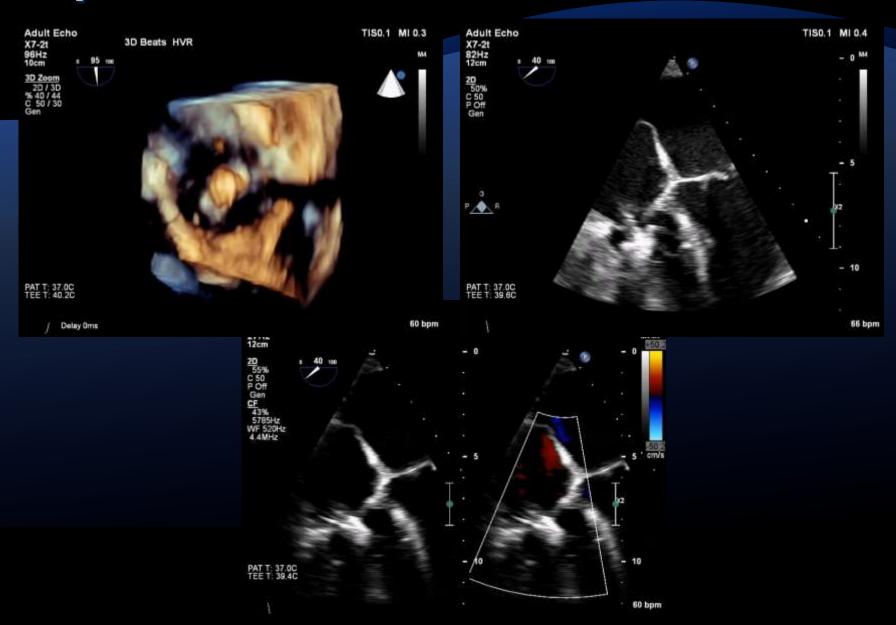
About 40

patients

Transjugular/

transfemoral

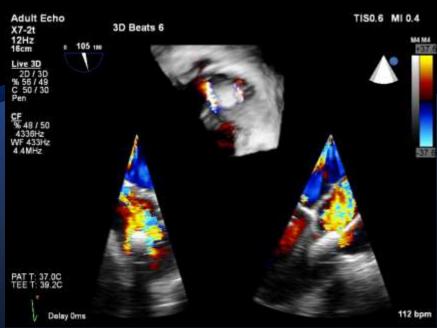
• Only pre-

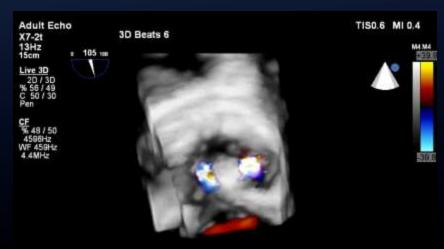

clinical data

Transfemoral Transfemoral Transjugular Transfemoral Transfemoral Transsubclavia Transjugular/ n

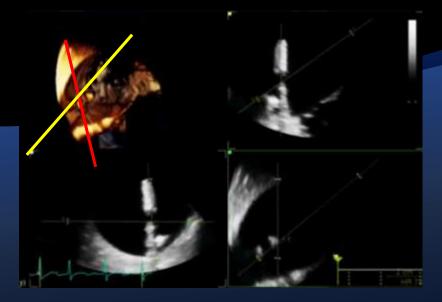
About 25

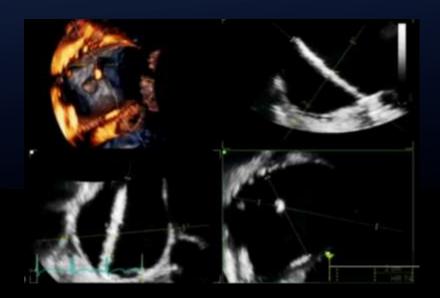
patients

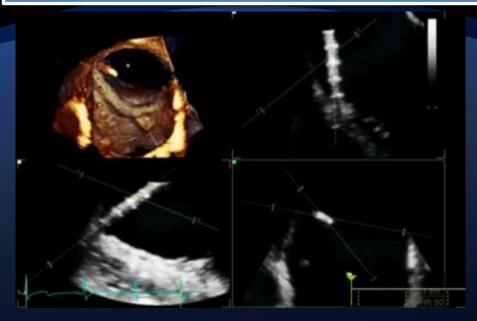

Clip 1

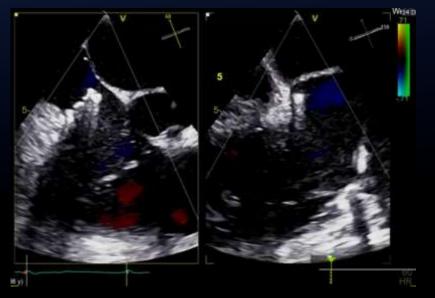


FORMA: Final Position

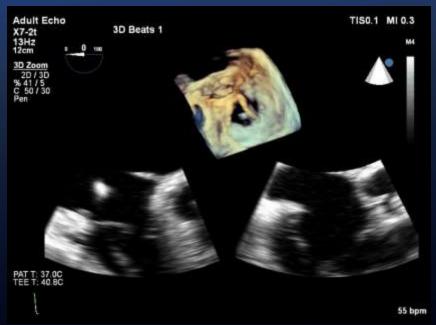

Total Residual EROA = 0.74 cm²




Cardioband TR



Tricuspid Valve View



Tri-Repair CE EU trial enrolling in Germany, France and Italy

Trialign

Cinching--Plicating

Potential Pivotal Trial Pathways for Transcatheter TV Therapies

TR in association with DMR

Single-arm study in pts at prohibitive/high surgical risk for MV Repair (STS ≥6-8 or conditions precluding surgery); endpoint = objective performance criteria

Functional TR

Single-arm study in pts at prohibitive/high surgical risk for TV Repair (STS ≥6-8 or conditions precluding surgery); endpoint = objective performance criteria

